miércoles, 28 de diciembre de 2016

FÍSICA Y QUÍMICA DE LA VISIÓN


En el estudio de la visión desde un punto de vista físico y químico hay que tener en cuenta dos elementos:

1. La visión desde el punto de vista físico podemos simplificarlo a una cámara oscura.
2. La visión desde el punto de vista química podemos simplificarlo hablando de dobles enlaces de carbono.

Física de la Visión

Posiblemente nunca se sabrá con precisión quién y cuándo descubrió la cámara oscura pero su presencia a lo largo de la historia de la humanidad es constante.

Fue en la antigua Grecia donde surgió la preocupación por encontrar una explicación del fenómeno lumínico. Esto condujo a los filósofos a observar los efectos de la luz en todas sus manifestaciones. Aristóteles sostuvo que los elementos que constituían la luz se trasladaban de los objetos al ojo del observador con un movimiento ondulatorio. Para comprobar su teoría, construyó la primera cámara oscura de la que se tiene noticia en la Historia, describiéndola de la siguiente manera: "Se hace pasar la luz a través de un pequeño agujero hecho en un cuarto cerrado por todos sus lados. En la pared opuesta al agujero, se formará la imagen de lo que se encuentre enfrente".

En la segunda mitad del siglo XV, se volvió a tener noticia de la cámara oscura a través de Leonardo da Vinci (1452-1519), quien redescubrió su funcionamiento y le adjudicó una utilidad práctica por lo que se le ha otorgado el crédito de su descubrimiento. El italiano Leonardo da Vinci y el alemán Alberto Durero (1471-1528) emplearon la cámara oscura para dibujar objetos que en ella se reflejaban. A partir de ese momento se utilizó como herramienta auxiliar del dibujo y la pintura, extendiéndose rápidamente en Europa.

En el siglo XVI un físico napolitano, Giovanni Battista Della Porta (1535-1615), antepuso al orificio una lente biconvexa (lupa) y con ella obtuvo mayor nitidez y luminosidad en la imagen. A partir de este avance varios científicos se dedicaron a perfeccionarla.

Finalmente, se le asigna a Johannes Kepler (1571-1630) el ser el primero en acuñar el término Cámara Oscura

Pero, ¿cómo "funciona" la cámara oscura?... Para explicarlo, partamos de la imagen inferior:


La luz que llega a un objeto, en este caso un árbol, se refleja y algunos de los haces de luz logran entrar a la cámara a través del pequeño orificio y llegar hasta el fondo que es la pantalla sobre la que se forma la imagen. La imagen se forma invertida debido a que la luz viaja en línea recta (también se invierten izquierda y derecha por la misma razón). Al observar la figura queda claro entonces la razón de la inversión de la imagen, y por tanto, también nos sirve para comprobar experimentalmente que la luz viaja en línea recta.

El agujero de la cámara debe de ser lo más pequeño posible para permitir la entrada pequeñito de unos pocos haces de luz, cuanto más grande sea el orificio más difusa será la imagen formada.

El ojo humano funciona como una cámara oscura también, probablemente hemos oído que las imágenes que vemos se forman invertidas en la retina. En el caso del ojo además del pequeño orificio, que es la pupila, existen otros elementos orgánicos como el cristalino y la córnea, cuya función es enfocar cualquier objeto, este cerca o lejos, en la retina.
En el siguiente vídeo podemos observar cómo funciona una cámara oscura:


Química de la Visión

Los átomos pueden unirse entre sí mediante enlaces sencillos, dobles o triples. La existencia de dobles enlaces entre átomos de carbono y su rigidez hace posible que leas esta entrada de blog. El proceso de la visión es muy complejo pero vamos a intentar simplificarlo al máximo.

Podemos decir, de una manera muy simplificada, que el ojo humano es una esfera con una abertura en la parte frontal. Por esta apertura penetra la luz hasta el fondo del ojo que está recubierto por unas células en forma de conos y bastoncillos. Cada ojo tiene 7 millones de conos que se encargan de detectar los colores y 120 millones de bastoncillos que se encargan de detectar la luz blanca. Las moléculas de la visión se encuentran en la superficie de conos y bastoncillos, siendo la rodopsina la que tiene un papel fundamental.

La rodopsina está formada por dos partes:

- Una proteína, denominada opsina.
- Un aldehido, denominado retinal.

La molécula de retinal puede adoptar dos formas isómeras denominadas cis y trans. Como isómeros que son, tienen la misma fórmula molecular y solo se diferencian en la distribución espacial de los sustituyentes del doble enlace situado en el carbono número 11. Cuando la rodopsina absorbe luz, el retinal se isomeriza a su forma trans, que tiene la propiedad de separarse de la opsina.



Cuando las dos partes de la rodopsina se separan, el color rojo púrpura de la rodopsina desaparece y esto hace que la célula a la que estaba unida la rodopsina excite a otras células que mandan un mensaje al cerebro. En condiciones normales es necesario que se exciten unas cinco células para provocar la sensación de visión. Por tanto, se necesitan 5 fotones para estimular el ojo.

Todo este proceso vuelve a su posición inicial a través de otro conjunto de reacciones. Pero el proceso inverso es algo más lento, y por ello, la imagen formada en la retina perdura una décima de segundo (aproximadamente). Esta persistencia de la imágenes es la que nos hace percibir en movimiento las imágenes del cine cuando en realidad no son más que una secuencia de fotografías estáticas tomas a intervalos de tiempo de un treintavo de segundo.

Durante la regeneración de la opsina se pierde parte de retinal que necesita ser reemplazado por vitamina A de la corriente sanguínea, que hace de ésta una sustancia clave de la salud visual.


miércoles, 7 de diciembre de 2016

CAYENDO RAYOS

Los rayos son uno de los fenómenos de la naturaleza más espectaculares que podemos observar con cierta facilidad y regularidad. Aunque en general solemos considerar que un rayo es una descarga eléctrica que se produce entre una nube y el suelo, la verdad es que puede producirse en cualquier situación en la que una gran carga eléctrica sobrepase el potencial de ruptura del aire. Estas situaciones pueden ser erupciones de un volcán y tormentas de arena o nieve (muy poco frecuentes pero que ocurren). Por otro lado, si nos fijamos en la típica tormenta con nubes, los rayos pueden producirse por descargas en varias situaciones: nube-nube, interior de una nube (las más comunes de todas), nube-aire o nube suelo.

Erupción en 2015 del volcán Calbuco en Chile (Fuente BBC Mundo)

Pero fijémonos en aquella situación que observamos de manera más frecuente: rayos producidos por descargas entre las nubes y el suelo.

La producción de un rayo tiene una duración muy corta. Por ello, lo que a nuestros ojos aparece como un único proceso es la combinación en realidad de varios procesos (descargas) que duran unas decenas de milisegundos. En general, estas descargas iniciales suelen ser tres o cuatro aunque en algunas tormentas se han llegado a medir hasta 26 descargas. La pregunta siguiente parece obvia, ¿cómo se produce cada una de esas descargas?...

Representación de la Descarga Guía
Una de estas descargas se produce cuando se alcanza el potencia de ruptura del aire cerca de una nube. Esto produce que una columna de carga negativa, denominada Descarga Guía, se mueva hacia el suelo una velocidad ligeramente superior a los 100 m/s. Esta primera descarga tiene forma de escalera porque el movimiento se produce a saltos discretos de 50 m aproximadamente y con un intervalo de tiempo de unos 50 ms entre salto y salto. ¿Por qué este proceso es discontinuo?... La culpa la tiene la variación de la densidad atmosférica que se produce por los electrones libres presentes en el aire. Esta descarga guía tiene una anchura de unos cuantos metros y su luminosidad es muy limitada (no es el rayo que nosotros estamos acostumbrados a ver).

Cuando el extremo de la descarga guía se acerca al suelo, puede provocar un segundo potencial de ruptura en el aire cerca del suelo (esto suele ocurrir en el extremos de un objeto con punta como mástiles, antenas o pararrayos). El resultado es que una columna con carga positiva se desplaza hacia arriba produciendo lo que se conoce como Descarga de Retorno. Las descargas guía y de retorno al encontrarse (entre 20 y 200 m del suelo) producen un cortocircuito y los electrones se desplazan entre la nube y el suelo con el extremo de transferencia de electrones moviéndose hacia arriba a velocidades próximas a la mitad de la velocidad del sonido (aproximadamente, la velocidad del sonido es 340 m/s). Este hecho provoca que una gran corriente de electrones se mueva en una región de unos pocos centímetros. Esta corriente eleva la temperatura del aire muy rápidamente y se ionizan los átomos presentes en la atmósfera (fundamentalmente nitrógeno y oxígeno). Como consecuencia se produce el resplandor que todos estamos acostumbrados a ver.

Producida la descarga, el canal abierto mantiene su conductividad durante unos milisegundos. Si la nube presenta más carga negativa puede producirse una nueva descarga, y con ella, un nuevo rayo. Como el canal está abierto, no se produce descarga guía. Muy al contrario, se mueve de forma rápida y continúa y recibe el nombre de Descarga Rápida. Con la descarga rápida vuelve a producirse todo el proceso descrito anteriormente.

Rayo producido en una tormenta (Fuente National Geographic en Español)

¿Y el trueno?... Cuando la corriente atraviesa el canal abierto, el aire se transforma en plasma (con temperaturas medias de 30000 K). Esto hace que aumente la presión de forma repentina y el plasma se expande también rápidamente. Esta expansión produce una onda de choque en el aire que lo rodea y ya tenemos el trueno que llega a nuestros oídos.

La Tierra, en general, es un buen conductor eléctrico. Si no existen fenómenos tormentosos y las condiciones meteorológicas son buenas y estables, podemos aproximar el valor del Campo Eléctrico sobre la superficie de la Tierra a unos 100 N/C. Este campo eléctrico está dirigido hacia abajo porque la carga en la superficie terrestre es negativa. La gran concentración de carga en la nube tormentosa es la responsable del intenso campo eléctrico que se genera entre la nube y el suelo y que lleva a la producción de los rayos. Este campo eléctrico puede alcanzar valores de hasta 25000 N/C durante la tormenta.

En la siguiente imagen se muestra la distribución de carga en una nube tormentosa.

(Fuente: Física. Serway-Jewett)

La nube tormentosa se aproxima a un tripolo. La carga positiva de la zona superior y la carga negativa de la zona central son aproximadamente iguales pero la carga positiva en la zona baja de la nube suele ser ligeramente inferior. ¿Y cómo se carga la nube?... Actualmente no se conoce bien el mecanismo que produce la carga de una nube y es un campo de investigación abierto y en continuo desarrollo.

Vista la distribución de carga existente entre la superficie de la Tierra (negativa) y la atmósfera (positiva), ¿podríamos hablar de un condensador planetario?... En una aproximación sencilla, podríamos responder afirmativamente a esta respuesta. La superficie de la Tierra sería una de las placas y el aire sería la otra. Dado que la carga en la atmósfera no se sitúa toda a la misma altura debemos hacer otra simplificación. En general, los modelos de la atmósfera toman una altura para esta placa atmosférica de 5 km sobre la superficie terrestre.

¿Y que capacidad tiene este macrocondensador terráqueo?... Como siempre, haciendo aproximaciones para simplificar los cálculos, podemos considerar que nuestro condensador terráqueo es de casi 1 Faradio. Puede parecer poco pero los condensadores utilizados en los circuitos eléctricos empleados en nuestros dispositivos más comunes tienen una capacidad que está en el orden de los microfaradios y los picofaradios.

En el siguiente vídeo podemos ver cómo simular rayos con la ayuda de una bola de plasma: